Mining, Mapping, and Accelerating Scholarly Networks

Katy Börner
Cyberinfrastructure for Network Science Center, Director
Information Visualization Laboratory, Director
School of Library and Information Science
Indiana University, Bloomington, IN
katy@indiana.edu

With special thanks to the members at the Cyberinfrastructure for Network Science Center; the Sci2, NWB, and EpiC teams; and the VIVO Collaboration

Shared Horizons: Data, Biomedicine, and the Digital Humanities
Maryland Institute for Technology.

April 11, 2013

Terra bytes of data

Find your way

Find collaborators, friends

Identify trends

Descriptive & Predictive Models
Type of Analysis vs. Level of Analysis

<table>
<thead>
<tr>
<th></th>
<th>Micro/Individual (1-100 records)</th>
<th>Meso/Local (101–10,000 records)</th>
<th>Macro/Global (10,000 < records)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Analysis/Profiling</td>
<td>Individual person and their expertise profiles</td>
<td>Larger labs, centers, universities, research domains, or states</td>
<td>All of NSF, all of USA, all of science.</td>
</tr>
<tr>
<td>Temporal Analysis (When)</td>
<td>Funding portfolio of one individual</td>
<td>Mapping topic bursts in 20-years of PNAS</td>
<td>113 Years of Physics Research</td>
</tr>
<tr>
<td>Geospatial Analysis (Where)</td>
<td>Career trajectory of one individual</td>
<td>Mapping a states intellectual landscape</td>
<td>PNAS publications</td>
</tr>
<tr>
<td>Topical Analysis (What)</td>
<td>Base knowledge from which one grant draws.</td>
<td>Knowledge flows in Chemistry research</td>
<td>VxOrd/Topic maps of NIH funding</td>
</tr>
<tr>
<td>Network Analysis (With Whom?)</td>
<td>NSF Co-PI network of one individual</td>
<td>Co-author network</td>
<td>NIH’s core competency</td>
</tr>
</tbody>
</table>
Mapping Indiana’s Intellectual Space

Identify

- Pockets of innovation
- Pathways from ideas to products
- Interplay of industry and academia

Individual Co-PI Network

Ke & Börner, (2006)
Mapping the Evolution of Co-Authorship Networks
Research question:
• Is science driven by prolific single experts or by high-impact co-authorship teams?

Contributions:
• New approach to allocate citational credit.
• Novel weighted graph representation.
• Visualization of the growth of weighted co-author network.
• Centrality measures to identify author impact.
• Global statistical analysis of paper production and citations in correlation with co-authorship team size over time.
• Local, author-centered entropy measure.

Studying the Emerging Global Brain: Analyzing and Visualizing the Impact of Co-Authorship Teams
Börner, Dall’Asta, Ke & Vespignani (2005)

Mapping Transdisciplinary Tobacco Use Research Centers Publications
Compare R01 investigator based funding with TTURC Center awards in terms of number of publications and evolving co-author networks.
Zoss & Börner, forthcoming.
Supported by NIH/NCI Contract HHSN261200800812
Mapping Topic Bursts

Co-word space of the top 50 highly frequent and bursty words used in the top 10% most highly cited PNAS publications in 1982-2001.

Spatio-Temporal Information Production and Consumption of Major U.S. Research Institutions

Research questions:
1. Does space still matter in the Internet age?
2. Does one still have to study and work at major research institutions in order to have access to high quality data and expertise and to produce high quality research?
3. Does the Internet lead to more global citation patterns, i.e., more citation links between papers produced at geographically distant research institutions?

Contributions:
- Answer to Qs 1 + 2 is YES.
- Answer to Qs 3 is NO.
- Novel approach to analyzing the dual role of institutions as information producers and consumers and to study and visualize the diffusion of information among them.
Type of Analysis vs. Level of Analysis

<table>
<thead>
<tr>
<th>Type of Analysis</th>
<th>Micro/Individual (1-100 records)</th>
<th>Meso/Local (101–10,000 records)</th>
<th>Macro/Global (10,000 < records)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Analysis/Profiling</td>
<td>Individual person and their expertise profiles</td>
<td>Larger labs, centers, universities, research domains, or states</td>
<td>All of NSF, all of science, and all of USA</td>
</tr>
<tr>
<td>Temporal Analysis (When)</td>
<td>Funding portfolio of one individual</td>
<td>Mapping topic bursts in 20-years of PNAS</td>
<td>113 Years of PNAS Research</td>
</tr>
<tr>
<td>Geospatial Analysis (Where)</td>
<td>Career trajectory of one individual</td>
<td>Mapping a national intellectual landscape</td>
<td>PNAS Publications</td>
</tr>
<tr>
<td>Topical Analysis (What)</td>
<td>Base knowledge from which one grant draws</td>
<td>Knowledge flows in Chemistry research</td>
<td>NIH’s grant funding</td>
</tr>
<tr>
<td>Network Analysis (With Whom?)</td>
<td>NSF Co-PI network of one individual</td>
<td>Co-author network NIH’s core competency</td>
<td>VxOrd/Topic map of NIH funding</td>
</tr>
</tbody>
</table>
Mapping Science Exhibit – 10 Iterations in 10 years
http://scimaps.org/

Mapping Science Exhibit at MEDIA X was on May 18, 2009 at Wallenberg Hall, Stanford University,
Eric Fischer. 2012. Language Communities of Twitter.

The Council for Chemical Research (CCR) has provided the U.S. Congress and government policy makers with important results regarding the macroeconomic implications of Public and Private R&D investments in Chemical Sciences.

The design shows that an input of $1B in federal investment, leveraged by $5B industry investment, brings new technologies to market and results in $10B of operating income for the chemical industry. $40B growth in Gross National Product (GNP) and further impacts the U.S. economy by generating approximately 600,000 jobs, along with a return of $800 in taxes. Additional details, not explicitly shown in the CCR studies, are depicted in the map to the right. This map clearly shows the link between investment at the innovation stage to commercialization stage, and the longer federal investment cycle which begins in basic research and culminates in national economic and job growth along with the impressive fact that in turn is available for investment in basic research.

Science Maps in “Expedition Zukunft” science train visiting 62 cities in 7 months, 12 coaches, 300 m long. Opening was on April 23rd, 2009 by German Chancellor Merkel.

http://www.expedition-zukunft.de

Illuminated Diagram Display soon on display at the Smithsonian in DC.

http://scimaps.org/exhibit_info/#ID
Ingo Gunther's Worldprocessor globe design now on display at the Giant Geo Cosmos OLED Display at the Museum of Emerging Science and Innovation in Tokyo, Japan
VIVO International Researcher Network

VIVO: A Semantic Approach to Creating a National Network of Researchers (http://vivoweb.org)

- Semantic web application and ontology editor originally developed at Cornell U.
- Integrates research and scholarship info from systems of record across institution(s).
- Facilitates research discovery and cross-disciplinary collaboration.
- Simplify reporting tasks, e.g., generate biosketch, department report.

Funded by $12 million NIH award.

Cornell University: Dean Krafft (Cornell PI), Manolo Bevia, Jim Blake, Nick Cappadona, Brian Caruso, Jon Corson-Rikert, Elly Cramer, Medha Devare, John Fereira, Brian Lowe, Stella Mitchell, Holly Mistelbauer, Anup Sawant, Christopher Westling, Rebecca Younes.

University of Florida: Mike Conlon (VIVO and UF PI), Cecilia Botero, Kerry Britt, Erin Brooks, Amy Buhler, Ellie Bushhousen, Chris Case, Valrie Davis, Nita Ferree, Chris Haines, Rae Jeane, Margeaux Johnson, Sara Kreinest, Yang Li, Paula Markes, Sara Russell Gonzalez, Alexander Rockwell, Nancy Schaefer, Michelle R. Tennant, George Hack, Chris Barnes, Narayan Raum, Brenda Stevens, Alicia Turner, Stephen Williams.

Indiana University: Katy Borner (IU PI), William Barnett, Shanshan Chen, Ying Ding, Russell Duhon, Jon Dunn, Micah Linnmeyer, Nianli Ma, Robert McDonald, Barbara Ann O’Leary, Mark Price, Tuyin Sun, Alan Walsh, Brian Wheeler, Angela Zoss.

Ponce School of Medicine: Richard Noel (Ponce PI), Ricardo Espada, Damaris Torres.

The Scripps Research Institute: Gerald Joyce (Scripps PI), Greg Dunlap, Catherine Dunn, Brant Kelley, Paula King, Angela Murrell, Barbara Noble, Cary Thomas, Michaela Trimarchi.

Washington University, St. Louis: Raksha Nagarajan (WUSTL PI), Kristi L. Holmes, Sunita B. Koul, Leslie D. McIntosh.

Weill Cornell Medical College: Curtis Cole (Weill PI), Paul Albert, Victor Brodsky, Adam Cheriff, Oscar Cruz, Dan Dickinson, Chris Huang, Itay Klar, Peter Michelfind, Grace Migliorisi, John Ruffing, Jason Specland, Tru Tran, Jesse Turner, Vinay Varughese.
Temporal Analysis (When) Temporal visualizations of the number of papers/funding award at the institution, school, department, and people level
Topical Analysis (What) Science map overlays will show where a person, department, or university publishes most in the world of science. (in work)

Network Analysis (With Whom?) Who is co-authoring, co-investigating, co-inventing with whom? What teams are most productive in what projects?
Geospatial Analysis (Where) Where is what science performed by whom? Science is global and needs to be studied globally.

Overview, Interactivity, Details on Demand come to commonly used devices and environments.
Online Interactive Maps for Sustainability Research and NIH

http://mapsustain.cns.iu.edu
The geographic map at **state level**.

The geographic map at **city level**.
Search result for “corn”
Icons have same size but represent different #records

Click on one icon to display all records of one type.
Here publications in the state of Florida.
Detailed information on demand via original source site for exploration and study.

The science map at 13 top-level scientific disciplines level.
The science map at 554 sub-disciplines level.
United States Patent
Ding, et al.

Thermal tolerant amylase from Acidothermus cellulolyticus

Abstract

The invention provides a thermal tolerant (thermostable) enzyme, AvIII, that is a member of the glycoside hydrolase (GH) family. AvIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

Inventors: Ding; Shi-You (Golden, CO); Adney; William S. (Golden, CO); Vincent; Todd B. (Golden, CO); Himmel; Michael E. (Littton, MO)
Assignee: Midwest Research Institute (Kansas City, MO)

https://app.nihmaps.org
The Information Visualization MOOC

ivmooc.cns.iu.edu

Students come from 93 countries
300+ faculty members
#ivmooc
Plug-and-Play Macroscopes.
Communications of the ACM, 54(3), 60-69.

Video and paper are at
http://www.scivee.tv/node/27704

Sci2 Tool – “Open Code for S&T Assessment”

OSGi/CIShell powered tool with NWB plugins and many new scientometrics and visualizations plugins.

Mapping NEH awards and MEDLINE publications, 1980-2009

NEH Grants:
41,258 grants of 47,197 started between 1980 and 2009, encompassing 3.21 billion of the 3.77 billion dollars awarded.

Geo-coding by zipcode:
36,512 of 41,258 grants encompassing 3.13 billion of a potential 3.21 billion were geocoded to 3,510 distinct locations.

Science-coding by topic:
37,132 of 41,258 grants encompassing 2.09 billion of a potential 3.21 billion were mapped to 42 distinct subdisciplines.

MEDLINE publications:
12.95 million papers were published between 1980 and 2009.

Geo-coding:
Not possible with the data we have.

Science-coding by journal:
11.62 million of 12.95 million papers were science located (89.7%). Science located 5,941 out of 14,561 journals (40.8%) to 415 distinct subdisciplines.
Topical Visualization: UCSD Map of Science
NEH grants, mapped based on categories

Chemical, Mechanical, & Civil Engineering
13,469,200 Mechanical Design Engineering

Electrical Engineering & Computer Science
153,044,896 Library Science; Information Retrieval
724,505 Logic

Humanities
509,389,136 American History
101,708,568 Art History
87,938,056 Asian Studies
15,956,450 Biblical Literature
33,668,248 Classics
347,050 Critical Studies
36,500,032 Cross Disciplinary Studies
238,170,928 English Literature
8,471 Ethics
4,126,880 German Studies
38,912,520 Hispanic Studies
2,234,555 Italian Studies
36,181,320 Linguistics
33,062,848 Literary Criticism
56,233,540 Medieval History
56,690,320 Modern Language
98,065,344 Music & Theatre
88,949,420 Philosophy Psychology
42,320,844 Science History
895,530 Semiotics
52,800,752 Social History
100,976,304 Socio-Cultural Anthropology

Social Sciences
2,593,480 Child Development
1,652,100 Communication Research
1,482,022 Economics
58,847,100 Education
53,233,792 Ethnology
79,414,408 Higher Education
71,120 Human Resource Management
15,179,400 International Development
3,008,390 International Economics
10,232,764 Law
4,693,470 Political Geography
28,897,260 Political Science
832,157 Public Administration
21,255,080 Regional Studies
1,967,490 Rural Studies
15,774,390 Sociology
4,333,450 Urban Studies
Topical Visualization: UCSD Map of Science
Medline papers, mapped based on journal names

References

All papers, maps, tools, talks, press are linked from http://cns.iu.edu

CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience