The Use of Knowledge Mapping in International STI Horizon Scanning

Katy Börner, Indiana University, USA

U.S. Looks to the Global Science, Technology, and Innovation Horizon
Friday, 14 February 2014: 8:30 AM-11:30 AM
Grand Ballroom C North (Hyatt Regency Chicago)

Map of Scientific Collaborations from 2005-2009

113 Years of Physical Review

Nobel Prizes in Physical Review

Bar Graph

Lines

114 Years of Physical Review - Bruce W. Herr II, Russell Duhon, Katy Borner, Elisha Hardy, Shashikant Penumarthi - 2007

Places & Spaces: Mapping Science Exhibit
scimaps.org

Brain Circulation

Figure 3.2 International mobility of UK researchers, 1995-2010. This analysis is based on author affiliation addresses in the published literature and is restricted to a set of 210,022 researchers with a UK affiliation during the period that are active, i.e. those with at least one article in the latest five-year period 2006-2010 and/or 10 articles in the entire 15-year period 1995-2010, or those with 10 articles in the period 2006-2010 but >10 articles in the period 1995-2010. Relative Productivity represents articles per year since the first appearance of each researcher as an author in the database during the period 1995-2010, relative to all UK researchers in the same period. Relative Sensitivity represents years since the first appearance of each researcher as an author in the database during the period 1995-2010, relative to all UK researchers in the same period. Both Relative Productivity and Relative Sensitivity are calculated for each author’s entire output in the period. Source: Scopus. For further discussion on author naming and disambiguation see Appendix B: Coherence Methodology.
Spatio-Temporal Information Production and Consumption of Major U.S. Research Institutions

Research questions:
1. Does space still matter in the Internet age?
2. Does one still have to study and work at major research institutions in order to have access to high quality data and expertise and to produce high quality research?
3. Does the Internet lead to more global citation patterns, i.e., more citation links between papers produced at geographically distant research institutions?

Contributions:
• Answer to Qs 1 + 2 is YES.
• Answer to Q 3 is NO.
• Novel approach to analyzing the dual role of institutions as information producers and consumers and to study and visualize the diffusion of information among them.

The Global 'Scientific Food Web'

Contributions:
Comprehensive global analysis of scholarly knowledge production and diffusion on the level of continents, countries, and cities.
Quantifying knowledge flows between 2000 and 2009, we identify global sources and sinks of knowledge production. Our knowledge flow index reveals, where ideas are born and consumed, thereby defining a global 'scientific food web'.
While Asia is quickly catching up in terms of publications and citation rates, we find that its dependence on knowledge consumption has further increased.
Collective Allocation of Science Funding as an Alternative to Peer Review

http://emborembopress.org/content/early/2014/01/07/embr.201338068

Contribution:
We propose and validate a highly decentralized funding system. The system operates by giving all scientists an unconditional, equal amount of funding each year; scientists are required to donate a given percentage of their total funding to other scientists whom they feel would make best use of the money. The proposed system requires a fraction of the costs associated with peer review, but has been shown to yield comparable results.
Making Every Scientist a Research Funder

When it comes to using peer review to distribute research dollars, Johan Bollen favors radical simplicity. Over the years, many scientists have suggested that the current system could be improved by changing the composition of the review panels, tweaking the interactions among reviewers, or revising how the proposals are scored. But Bollen, a computer scientist at Indiana University, Bloomington, would simply award all eligible researchers a block grant—and then require them to give some of it away to colleagues they judge most deserving.

That radical step, described in a paper Bollen and four Indiana colleagues recently posted on ARBO Reports, mains peer review’s core concept of tapping into the views of the most knowledgeable researchers. But it would eliminate the huge investment in time and money required to submit proposals and assemble panels to judge them.

Bollen’s process would be almost instantaneous. In a version of expert-directed crowdsourcing, scientists would fill out a form once a year listing their favored researchers, and a predetermined portion of their annual grant money—a total of, say, 50%—would then be transferred to their choices.

“So many scientists spend so much time on peer review, and there’s a high level of frustration,” Bollen explains. “We already know who the best people are. And if you’re doing good work, you deserve to receive support.”

Others are skeptical. “I’ve known Johan for a long time and have the highest regard for his ability as an out-of-the-box thinker,” says Stephen Griffin, a retired National Science Foundation (NSF) program manager who’s now a visiting professor of information sciences at the University of Pittsburgh in Pennsylvania. “But there are a number of issues he doesn’t address.”

These sticking points include the likely mismatch between what researchers need and what their colleagues give them; the absence of any replacement for the overhead payments in today’s grants, which support infrastructure at host institutions; and the dearth of public accountability for the billions of dollars that would flow from public coffers to individuals. “Scientists aren’t really equipped to be a funding agency,” Griffin notes.

Bollen acknowledges that the process would need safeguards to ensure that scientists don’t reward their friends or punish their enemies. But his analysis suggests that the U.S. research landscape would not look all that different if his radical proposal were adopted.

Drawing upon citation data in 27 million papers over 20 years, the Indiana researchers conducted a simulation premised on the idea that scientists would reallocate their federal dollars according to how often they cited their peers. The simulation, he says, yielded a funding pattern “similar in shape to the actual distribution” at NSF and the National Institutes of Health for the past decade—at a fraction of the overhead required by the current system.

--JOM

Illuminated Diagram Display on display at the Smithsonian in DC.

http://scimaps.org/exhibit_info/
Science Maps in “Expedition Zukunft” science train visiting 62 cities in 7 months 12 coaches, 300 m long Opening was on April 23rd, 2009 by German Chancellor Merkel
http://www.expedition-zukunft.de
Information Technology

Find your way

Find collaborators, friends

Identify trends

Video and paper are at http://www.scivee.tv/node/27704

References

All papers, maps, tools, talks, press are linked from http://cns.iu.edu

CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience