Data Visualization Literacy

- Andee: What does education want from data visualization?
- Joe: What do data visualizations need to be comprehensible?
- Katy: What frameworks can we provide for understanding data visualizations?
- Peggy: How do we make data visualization accessible on the museum floor?
- Bryan: How do we make data visualization accessible on the museum floor?

ASTC Conference
Tampa, Florida

September 25, 2016

@katycns

Data Visualization Literacy: Visualization Frameworks

Katy Börner
Victor H. Yngve Distinguished Professor of Information Science
Director, Cyberinfrastructure for Network Science Center
School of Informatics and Computing and
Indiana University Network Science Institute
Indiana University, USA

ASTC Conference
Tampa, Florida

September 25, 2016

@katycns
How to Classify (Name & Make) Different Visualizations?

By
- User insight needs?
- User task types?
- Data to be visualized?
- Data transformation?
- Visualization technique?
- Visual mapping transformation?
- Interaction techniques?
- Or?
Different Question Types

Find your way
Find collaborators, friends
Identify trends

Different Levels of Abstraction/Analysis

Macro/Global Population Level
Meso/Local Group Level
Micro Individual Level
Tasks

LEVELED

<table>
<thead>
<tr>
<th>MICRO (individual level)</th>
<th>Meso (local level)</th>
<th>Macro (critical level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>about 2,000 records</td>
<td>about 2,000-10,000 records</td>
<td>more than 100,000 records</td>
</tr>
</tbody>
</table>

TYPES

- Statistical Analysis
- Temporal Analysis
- WHERE: Generational Analysis
- WHERE: Temporal Analysis
- WITH WHERE: Mathematical Analysis

READ

- Validation
- Interpretation

ANALYZE

Types and levels of analysis determine data, algorithms & parameters, and deployment.

VISUALIZE

- Visually encode data
- Overlay data
- Select visualization type

DEPLOY

Stakeholders

See page 5
Needs-Driven Workflow Design

Stakeholders

Validation
Interpretation

Types and levels of analysis determine data, algorithms & parameters, and deployment

Data

READ

ANALYZE

DEPLOY

Visually encode data
Overlay data
Select visualiz. type

Visualization Framework

Insight Need Types
- category/cluster
- order/rank/sort
- distributions (also outliers, gaps)
- comparisons
- trends (process and time)
- geospatial
- compositions (also of text)
- correlations/relationships

Data Scale Types
- nominal
- ordinal
- interval
- ratio

Visualization Types
- table
- chart
- graph
- map
- network layout
- geometric symbols
- point
- line
- area
- surface
- volume
- linguistic symbols
- text
- numerals
- punctuation marks
- pictorial symbols
- images
- icons
- statistical glyphs

Graphic Symbol Types
- spatial
- position
- outline
- form
- color
- optical motion

Graphic-Variable Types

Interaction Types
- overview
- zoom
- search and locate
- filter
- details-on-demand
- history
- extract
- link and brush
- projection
- distortion

See page 24
Visualization Framework

Basic Task Types

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>selection</td>
<td>category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>categorizes/cluster</td>
</tr>
<tr>
<td>order</td>
<td>order rank</td>
<td>ranking</td>
<td></td>
<td></td>
<td></td>
<td>table</td>
<td></td>
<td></td>
<td>order/rank/sort</td>
</tr>
<tr>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>distribution</td>
<td></td>
<td></td>
<td>distributions (also outliers, gaps)</td>
</tr>
<tr>
<td></td>
<td>compare</td>
<td>nominal comparison & deviation</td>
<td></td>
<td></td>
<td></td>
<td>compare</td>
<td></td>
<td></td>
<td>comparisons</td>
</tr>
<tr>
<td></td>
<td>time series</td>
<td>patterns over time</td>
<td></td>
<td></td>
<td></td>
<td>track rises</td>
<td></td>
<td></td>
<td>trends (process and time)</td>
</tr>
<tr>
<td></td>
<td>geospatial</td>
<td>spatial relations</td>
<td></td>
<td></td>
<td></td>
<td>generate maps</td>
<td></td>
<td></td>
<td>geospatial</td>
</tr>
<tr>
<td></td>
<td>quantity</td>
<td>part-to-whole</td>
<td></td>
<td></td>
<td></td>
<td>see parts of whole, analyze text</td>
<td></td>
<td></td>
<td>compositions (also of text)</td>
</tr>
<tr>
<td></td>
<td>association</td>
<td>correlate</td>
<td></td>
<td></td>
<td></td>
<td>relations</td>
<td></td>
<td></td>
<td>correlations/relationships</td>
</tr>
</tbody>
</table>

Visualization Framework

Insight Need Types

- categorized/cluster
- order/rank/sort
- distributions (also outliers, gaps)
- comparisons
- trends (process and time)
- geospatial
- compositions (also of text)
- correlations/relationships

Data Scale Types

- nominal
- ordinal
- interval
- ratio

Visualization Types

- table
- chart
- graph
- map
- network layout

Graphic Symbol Types

- geometric symbols
- point
- line
- area
- surface
- volume
- linguistic symbols
- text
- numerals
- punctuation marks
- pictorial symbols
- images
- icons
- statistical glyphs

Graphic-Variable Types

- spatial position
- spatial form
- color
- optics motion

Interaction Types

- overview
- zoom
- search and locate
- filter
- details-on-demand
- history
- extract
- link and brush
- projection
- distortion
Visualization Types (Reference Systems)

1. **Charts**: No reference system—e.g., Wordle.com, pie charts

2. **Tables**: Categorical axes that can be selected, reordered; cells can be color coded and might contain proportional symbols. Special kind of graph.

3. **Graphs**: Quantitative or qualitative (categorical) axes. Timelines, bar graphs, scatter plots.

4. **Geospatial maps**: Use latitude and longitude reference system. World or city maps.

5. **Network graphs**: Node position might depends on node attributes or node similarity. **Tree graphs**: hierarchies, taxonomies, genealogies. **Networks**: social networks, migration flows.

IVMOOC App – More than 60 visualizations

The “IVMOOC Flashcards” app can be downloaded from Google Play and Apple iOS stores.
Visualization Framework

<table>
<thead>
<tr>
<th>Insight Need Types</th>
<th>Data Scale Types</th>
<th>Visualization Types</th>
<th>Graphic Symbol Types</th>
<th>Graphic Variable Types</th>
<th>Interaction Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>page 26</td>
<td>page 28</td>
<td>page 30</td>
<td>page 32</td>
<td>page 34</td>
<td>page 26</td>
</tr>
<tr>
<td>category/cluster</td>
<td>nominal</td>
<td>table</td>
<td>geometric symbols</td>
<td>spatial position</td>
<td>overview</td>
</tr>
<tr>
<td>order/sort</td>
<td>ordinal</td>
<td>chart</td>
<td>points</td>
<td>spatial position</td>
<td>zoom</td>
</tr>
<tr>
<td>distributions</td>
<td>interval</td>
<td>graph</td>
<td>line</td>
<td>spatial position</td>
<td>search and locate</td>
</tr>
<tr>
<td>(also outliers, gaps)</td>
<td>ratio</td>
<td>map</td>
<td>area</td>
<td>spatial position</td>
<td>filter</td>
</tr>
<tr>
<td>comparisons</td>
<td></td>
<td>network layout</td>
<td>surface</td>
<td>spatial position</td>
<td>details-on-demand</td>
</tr>
<tr>
<td>trends</td>
<td></td>
<td></td>
<td>volume</td>
<td>spatial position</td>
<td>history</td>
</tr>
<tr>
<td>(process and time)</td>
<td></td>
<td></td>
<td>linguistic symbols</td>
<td>spatial position</td>
<td>extract</td>
</tr>
<tr>
<td>geospatial</td>
<td></td>
<td></td>
<td>text</td>
<td>spatial position</td>
<td>link and brush</td>
</tr>
<tr>
<td>composition</td>
<td></td>
<td></td>
<td>punctuation marks</td>
<td>spatial position</td>
<td>projection</td>
</tr>
<tr>
<td>(also of text)</td>
<td></td>
<td></td>
<td>images</td>
<td>spatial position</td>
<td>distortion</td>
</tr>
<tr>
<td>correlations/relationships</td>
<td></td>
<td></td>
<td>statistical glyphs</td>
<td>spatial position</td>
<td></td>
</tr>
</tbody>
</table>

See page 24

Graphic Variable Types Versus Graphic Symbol Types

Geometric Symbols

- **Point**:
 - •
 - ○
 - □
- **Line**:
 - —
 - —
 - —
- **Area**:
 - □
 - ○
 - △

Color

- Red
- Green
- Blue
- Yellow

Value

- Low
- Medium
- High

Plan

- Top
- Side
- Front
The Information Visualization MOOC
ivmooc.cns.iu.edu

Students from ~100 countries
370+ faculty members
#ivmooc

Books Used in the IVMOOC

Teaches timely knowledge:
Advanced algorithms, tools, and hands-on workflows.

Teaches timeless knowledge:
Visualization framework—exemplified using generic visualization examples and pioneering visualizations.
Course Schedule

Part 1: Theory and Hands-On

• Session 1 – Workflow Design and Visualization Framework
• Session 2 – “When:” Temporal Data
• Session 3 – “Where:” Geospatial Data
• Session 4 – “What:” Topical Data

Mid-Term

• Session 5 – “With Whom:” Trees
• Session 6 – “With Whom:” Networks
• Session 7 – Dynamic Visualizations and Deployment

Final Exam

Part 2: Students work in teams on client projects.

Final grade is based on Class Participation (10%), Midterm (30%), Final Exam (30%), and Client Project(30%).
Load One File and Run Many Analyses and Visualizations

<table>
<thead>
<tr>
<th>Times Cited</th>
<th>Publication Year</th>
<th>City of Publisher</th>
<th>Country</th>
<th>Journal Title (Full)</th>
<th>Title</th>
<th>Subject Category</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2011</td>
<td>NEW YORK</td>
<td>USA</td>
<td>COMMUNICATIONS OF THE ACM</td>
<td>Plug-and-Play Macroscopes</td>
<td>Computer Science</td>
<td>Borner, K</td>
</tr>
<tr>
<td>18</td>
<td>2010</td>
<td>MALDEN</td>
<td>USA</td>
<td>CTS-CLINICAL AND TRANSLATIONAL SCIENCE</td>
<td>Advancing the Science of Team Science</td>
<td>Research & Experimental Medicine</td>
<td>Falk-Krzesinski, HJ</td>
</tr>
</tbody>
</table>

Sci2 Tool Interface Components
Download tool for free at http://sci2.cns.iu.edu

Co-author and many other bi-modal networks.
References

All papers, maps, tools, talks, press are linked from http://cns.iu.edu
These slides will soon be at http://cns.iu.edu/docs/presentations

CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience