Enter a Job, Get Course Recommendations

Nan Li\(^2\), Naren Suri\(^1\), Zheng Gao\(^1\), Tian Xin\(^3\), Katy Börner\(^1\), Xiaozhong Liu\(^1\)
\(^1\)School of Informatics and Computing, Indiana University Bloomington
\(^2\)College of Transportation Management, Dalian Maritime University
\(^3\)School of Information Resource Management, Renmin University of China

Abstract
In an interdisciplinary learning environment, students are facing difficulties to locate the right education opportunities, e.g., campus courses or MOOCs, to achieve their career goals. In this paper, we propose a novel student program planning system. Using the system, students can enter job preferences, e.g., “Software Engineer at Google”, and text-based and network graph-based recommendation algorithms will suggest education opportunities that help students achieve their career goals. Preliminary results show that the proposed solution is promising in recommending students a personalized education plan.

Keywords: Student Program Planning; Education; Text/Graph Mining

1 Introduction

Personalized student program planning and course scheduling services have been identified as an important problem in the past few years. As students are learning in a more interdisciplinary environment, they face an increasing amount of pressure to locate the right courses and programs. In previous studies, Bendakir and Aïmeur (2006); Werghi and Kamoun (2009); Chu, Chang, and Hsia (2003) proposed a number of information recommendation and data mining methods, i.e., association rules and decision trees, in support of program planning and course recommendation by students. In most of those studies, courses were recommended to the target student based on his/her (computational) profiles.

However, students may have different career goals, and they may have different needs when choosing what courses to take. For instance, two iSchool students may take the very same required courses in the first academic year (because they come from the same academic program), but they may be interested in different courses in the second academic year because of different career goals.

In order to address this problem, we proposed a novel student programme planning system that takes current expertise and career goal information into consideration. Unlike prior efforts, we propose a new method to recommend education opportunities that meets student’s career goals, e.g., jobs. As Figure 1 shows, the proposed system lets users (actors) submit job information. Text-based and/or network graph-based search and recommendation methods are used to recommend high quality courses or MOOCs. The system represents information on jobs, university courses and MOOCs via a text index and a network graph index. In the heterogeneous knowledge graph index, each job, company, course, topic, etc. is interconnected with...
nodes of other types. There are 9 types of nodes and 10 types of edges, see Figure 2. The recommendation engine uses a random walk algorithms to recommend courses or MOOCs that match a student’s past courses and the target job (query) node. Preliminary results show that the proposed method recommends potential educational opportunities customized to the student’s profile.

2 Literature Review

In an interdisciplinary learning environment, the volume of education-related information available is rapidly increasing. For instance, MOOCs exist for many topics and the line between online and on campus education is blurring (Pappano, 2012). This abundance of educational information has created the need to help students find, organize, and use resources that match their individual goals, interests, and current knowledge (Farzan & Brusilovsky, 2006).

Over the past years, a number of information retrieval/recommendation as well as data mining techniques have been developed for student course planning. For instance, Farzan and Brusilovsky (2006) proposed a CourseAgent system to recommend courses by leveraging students’ assessment of courses. Similarly, the CourseRank system proposed by Parameswaran, Venetis, and Garcia-Molina (2011) integrates a number of different features for course recommendation, such as course requirement and student feedback. Meanwhile, a number of machine learning methods, e.g., association rules by Bendakir and Aïmeur (2006), graph theory by Chu et al. (2003), and decision trees by Werghi and Kamoun (2009), have been employed to enhance the course recommendation performance and to better serve students.

However, to the best of our knowledge, the approach does not exist to utilize student career goals and comprehensive job market information to recommend education opportunities. Subsequently, we detail our proposed method to address this problem.
3 Methodology

In this section, we describe the proposed methodology in detail along with the preliminary experiment results.

3.1 Data Collection and Indexing

For this project, we collected various kinds of data, including university course data, MOOC data, and job posting data. Using information extraction algorithms, we extracted different named entities from the text data, i.e., course/MOOC description and job posting content. See legend in Figure 2 for sample node and edge types. A listing of all different nodes types and the number of exemplars for each type can be found in the top-right of the figure.

However, entities are isolated in the text index and relationships are not explicit. For example, from a course recommendation viewpoint, Information Retrieval, Information Visualization and Bayesian Network should be interconnected implicitly or explicitly. In order to address this problem, we index all the courses, MOOCs and jobs on a novel heterogeneous knowledge graph that interlinks all the jobs, courses, and MOOCs via semantically typed links collected from Wikipedia\(^1\). For instance, by extracting Wikipedia concepts from the Data Scientist job postings, on average, they are linked to Machine Learning, Matlab, and Unstructured Data nodes with transitioning probabilities (0.072, 0.024 and 0.010 respectively). The concepts (keywords) extracted from Wikipedia are also interconnected on the graph via page incoming/outgoing links.

The complete network graph has a total 395,030 nodes and 993,526 edges. There are 8,350 jobs, 716 university courses, 750 MOOCs, 1,774 companies, 6,924 company specialities, 38 job functions, 954 locations, 375,208 related entities (keywords extracted from Wikipedia), and 316 instructors.

3.2 Text-based Approach

In the system, students can use a text query to represent their career goal, and the system recommends courses and MOOCs based on the job query together with the probability that the course matches the job query, \(P(\text{course} | \text{job query})\). In the proposed system, we utilized a two-step approach. First, student inputs text query is sent to the job text indexation and relevant jobs are fetched. Then, we extracted the keyword information from each retrieved (and top-ranked) job posting as job query. For instance, when student input Soft Engineer in the system, we first retrieve a number of job postings from the job index, and then extract keyword list from those postings as the job query to represent student information need. Note that, the extracted keywords associate with the weight, e.g., frequency or probability in the target job postings, which can be translated to the query vector or query language model for the next step.

Meanwhile, a pseudo relevance feedback approach is used to further enhance the recommendation performance. For instance, the most important words/entities are extracted from the top ranked course/MOOC descriptions to enhance the query quality and ranking results. More detailed pseudo relevance feedback algorithm can be found in (Yu, Cai, Wen, & Ma, 2003).

3.3 Graph-based Approach

As aforementioned, a graph with job, course, MOOC and keyword nodes is constructed for graphical recommendation. On a graph \(G\), when we query for a job from job node to retrieve the course or MOOC node, the traversed path over the edges with probabilistic weights results in ranking the highly relevant education opportunities. The results are calculated using the random walk algorithm to recommend and rank the candidate’s educational opportunities. On the graph, if we use \(N_j\) to represent the query job, and \(N_o\) for a candidate’s course/MOOC, the ranking score can be represented by:

\[
P(N_j \rightarrow N_o) = \sum_{I_k \in N_j \rightarrow N_o} \prod_{N_x \in I_k} P(N_{x+1} | N_x)
\]

\(^1\)Wikipedia 2015 Dump
Table 1: Preliminary Result for Different Ranking Features

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>MAP</th>
<th>Precision@5</th>
<th>Precision@10</th>
<th>MAP@5</th>
<th>MAP@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Space</td>
<td>0.6113</td>
<td>0.7589</td>
<td>0.6250</td>
<td>0.6113</td>
<td>0.7487</td>
<td>0.7589</td>
</tr>
<tr>
<td>Language Model</td>
<td>0.7050</td>
<td>0.8275</td>
<td>0.6750</td>
<td>0.7050</td>
<td>0.7835</td>
<td>0.8275</td>
</tr>
<tr>
<td>Relevance Feedback</td>
<td>0.6550</td>
<td>0.7463</td>
<td>0.7000</td>
<td>0.6550</td>
<td>0.8198</td>
<td>0.7463</td>
</tr>
<tr>
<td>Graph (J-K-C)</td>
<td>0.5465</td>
<td>0.6345</td>
<td>0.5165</td>
<td>0.5465</td>
<td>0.6486</td>
<td>0.6345</td>
</tr>
<tr>
<td>Graph (J-K-K-C)</td>
<td>0.5425</td>
<td>0.6104</td>
<td>0.5150</td>
<td>0.5425</td>
<td>0.5953</td>
<td>0.6104</td>
</tr>
<tr>
<td>Graph (J-K-J-K-C)</td>
<td>0.4200</td>
<td>0.5945</td>
<td>0.3750</td>
<td>0.2333</td>
<td>0.4632</td>
<td>0.3303</td>
</tr>
</tbody>
</table>

where $I_{N_j \rightarrow N_o}^N F(path_a)$ is a path instance belonging to a path function $F(path_a)$. The random walk probability from N_j to N_o on this path can be calculated by $\prod_{N_x \in I_{N_j \rightarrow N_o}^N} P(N_{x+1}|N_x)$, with $P(N_{x+1}|N_x)$ being the transitioning probability between the nodes on the graph.

For this method, we propose a number of different random walk based path functions on the graph, $F(path_a)$. For instance, on the proposed graph schema, the job (N_{job}) and course/MOOC nodes ($N_{opportunity}$) can be interconnected via three important path functions, $N_{job} \rightarrow N_{keyword} \rightarrow N_{opportunity}$; $N_{job} \rightarrow N_{keyword} \rightarrow N_{keyword} \rightarrow N_{opportunity}$; $N_{job} \rightarrow N_{keyword} \rightarrow N_{job} \rightarrow N_{keyword} \rightarrow N_{opportunity}$. The first one uses the direct relations between course/MOOC and job via entity information, and the second and third ones use the relationship between entities (e.g., Information Retrieval and Machine Learning are interconnected on the Wikipedia graph) and the relationship between job and entities.

3.4 Informal Evaluation

Two graduate students were asked to use the course recommendation system prototype. Each of them entered 10 text queries (e.g., job titles) and rated each recommended course/MOOC as ‘useful’, ‘just OK,’ or ‘not useful’. In Table 1, we report the performance of different recommendation functions (overall ranking performance and top recommended education opportunities accuracy). Precision, MAP (Mean Average Precision), Precision@5, Precision@10, MAP@5 and MAP@10 are reported as the evaluation metrics. In the experiment, we examine three different graphical ranking functions, $N_{job} \rightarrow N_{keyword} \rightarrow N_{opportunity}$ (J-K-C); $N_{job} \rightarrow N_{keyword} \rightarrow N_{keyword} \rightarrow N_{opportunity}$ (J-K-K-C); and $N_{job} \rightarrow N_{keyword} \rightarrow N_{job} \rightarrow N_{keyword} \rightarrow N_{opportunity}$ (J-K-J-K-C).

We find that the proposed method, both text and graph ranking functions, can be useful for student program planning with career information. Meanwhile, when using each individual ranking feature, the text-based approach outperforms the network graph ones.

4 Conclusion

In this study, we introduced a novel method and prototype system that recommends courses based on job queries. Unlike prior efforts, student can enter their career goal, and the text and graph-based recommendation algorithms can recommended optimized education opportunities, MOOCs and local courses, to the user. Even though we find the text ranking features outperform graph ones in the preliminary result, the graph recommendation features can be significant in the next ranking fusion stage (as Figure 1 shows). For instance, based on the learning to rank studies, studies (Liu, Yu, Guo, & Sun, 2014; Liu, Xia, Yu, Guo, & Sun, 2016) showed that graph-based approaches can provide more distinct ranking information, which can significantly enhance the recommendation performance (e.g., from learning to rank perspective, language model plus PageRank can outperform language model plus vector space).

In the future, we plan to integrate different ranking features (supervised ranking fusion) to further enhance the recommendation performance. In addition, we will run a formal user study to identify task accuracy and performance by different user groups that might be interested to use the system, e.g., university vs. MOOC students; full-time vs. part-time students.
References

