The Current State of Research Networking

- We are well into the first generation of tools, but we are still conceptualizing what successive generations might look like.
 - As support for this, consider that the majority of participating institutions are still in the process of fully deploying their first research networking system.
VIVO

- As meme
- As project
- As platform
- As ontology

How do you tell whether you’re ‘compatible’?

- Option 1 – run VIVO as a platform
- Option 2 – field a SPARQL endpoint serving RDF data aligned with the VIVO ontology
Loki’s VIVO Stack

• D2RQ – SPARQL to JDBC translator
• Teiid – data federation layer (VIVO-like virtual database)
• PostgreSQL – Loki’s storage layer (Loki native data model)

But do you then look like VIVO?

– Validate with a bunch of SPARQL queries
– Iterate through the ontology using Jena

– For each class in the ontology
 • SELECT count(?inst) WHERE { ?inst <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <aClass> }

– For each class for each property
 • SELECT count(?prop) WHERE { ?inst <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <aClass>. ?inst <aProp> ?prop}
The Google Imperative

- The broad population of users are addicted to “just-relevant-enough” search – fast
- The problem is that distributed semantic search (i.e., SPARQL driven by an ontology) is precise, and slow

Meta-search or Federated Search?

- The two iterations of direct2experts are good examples of meta-search
 - All data stored at the edges
 - Search cost (computation) is distributed to the edges
 - Aggregation occurs at query time, with only partial information as to why a hit ranks the way it does
Meta-search or Federated Search?

- Federated search can blend multiple information sources in a unified manner, but at a cost
 - Source data must be harvested
 - Aggregated data must be stored at the federation site
 - Search cost occurs at the federation site

Initial CTSAsearch Architectural Choices

- Use SPARQL to harvest just the data to be used in indexing
- Cache data locally to support experimentation / value-addition
- Generate index from cached data, with hits pointing at person URIs
Initially harvested:

- Persons and demographic properties
 - URI
 - First and last name
 - Title (optional)
 - Email address (optional)
 - Phone number (optional)
 - Research overview and areas (optional)
 - Keywords (optional)

Initially harvested:

- Academic articles and properties
 - URI
 - Label (optional)
 - PMID (optional)
 - DOI (optional)
 - PMCID (optional)
Initially harvested:

• Authorship and properties
 – Person URI
 – Article URI
 – rank (optional)
 – isCorrespondingAuthor (optional)

Enrichment

• Academic articles (with inferrable PMID)
 – Abstract
 – Keywords
 – MeSH terms
 – Chemicals
 – Genes
Concept-driven search

- Named entity recognition pass against all suitable fields
 - Recognized UMLS CUIs added to index record for person
- Search text processed similarly
 - All UMLS CUIs and subtype CUIs added to user query

Inter-institutional Coauthorship

- Materialize
 - Article URI
 - DOI
 - PMID
- Write big query joining author-authorship-view-authorship-author chain
- Result materialization
 - Author, coauthor, count
Lessons Learned from Initial Configuration

• Based on ontology coverage analysis, many (most!) sites get very sparse outside of persons and publications
• Cross-site identification of collaboration is quite feasible once publications appear
Lessons Learned from Initial Configuration

- Many sites find SPARQL endpoint deployment “challenging”
- It’s remarkably easy to crash a SPARQL endpoint…
 - Some queries return millions of triples

Architectural Alternatives

- Have sites submit/serve dump files
 - Current approach for UCSF, OHSU
 - Added manually to CTSAsearch database
Architectural Alternatives

• Crawl public VIVO interface
 – Crawler implemented, working on data integration
 – Successfully crawled
 • ColPos (Mexico)
 • Eindoven (Netherlands)
 • Melbourne (Australia) (in progress, 9.5m triples and counting)
 • APA, Colorado, Idaho, Nebraska, New Mexico

Lessons Learned from Current Configuration

• Many sites find VIVO deployment “challenging”
• It’s remarkably easy to crash a VIVO…
 – Rate limiting the crawler seems to have helped
• Eindoven crawl:
 • 56 hours
 • 4.3 million triples
Next Steps

- Field specialized crawlers for
 - Harvard Profiles
 - SciVal Experts
 - Digital CV platforms
 - CV PDFs

Next steps

- CiteSeer-like Web crawler is running
 - Capturing DOIs, PMIDs and links to PDFs
 - Current database is 45m URLs
 - 3m DOIs
 - 800k PMIDs
 - 12m PDFs
- Further profile enrichment
 - New domains (e.g., hard sciences)
 - New sources (e.g., GenBank, EMR, …)
Questions?

• Email: david-eichmann@uiowa.edu
• Thanks to the Research Networking Collaborative